Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mechanism based modelling of plastic deformation

Objective

A fierce competition between structural materials such as steels, aluminium alloys, magnesium alloys and polymers takes place in the transportation area. Design concepts for light-weight structures require tailored materials, which generally combine high strength and low weight. Advanced high strength steels (AHSS) exhibit exceptional properties that can lead to a drastic reduction in the weight of structures and, consequently, significant energy savings and emission reduction. However, due to their high strength, many new manufacturing issues are emerging and failure phenomena during service must be carefully evaluated in order to avoid catastrophic events. To use the full potential of these steels, accurate tools for the prediction of deformation during the forming process and a proper failure characterisation is required. In this proposal constitutive models based on deformation mechanisms will be developed, implemented into the framework of finite elements, verified and validated. This will be done by means of a multidisciplinary approach involving metal physics, advanced mechanical characterisation, process monitoring and technological tests. To achieve the goal, experimental procedures have to be optimised in order to feed constitutive equations with the necessary parameters. Special emphasis will be put on the micromechanics of deformation twinning, which is one of the dominant mechanisms in TWIP (twinning induced plasticity) steels and magnesium. Novel numerical tools will be developed making it possible to perform numerical predictions of forming processes and in-service performance. Together with experienced scientists in Korea microstructure-property relations will be established for newly developed steel materials. The proposed methodology itself, however, can be applied to metallic materials in general. A continuation of the cooperation is hence possible once the future research focus of the researcher should be in a different class of materials.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IOF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

HELMHOLTZ-ZENTRUM HEREON GMBH
EU contribution
€ 293 615,07
Address
MAX PLANCK STRASSE 1
21502 GEESTHACHT
Germany

See on map

Region
Schleswig-Holstein Schleswig-Holstein Herzogtum Lauenburg
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0