Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Singlet exciton fission as a route to more efficient dye-sensitized solar cells

Objective

One of the greatest scientific challenges of the coming decades will be to produce sufficient energy to meet consumption demands, particularly as fossil fuel reserves decline. A leading alternative method of producing energy is the conversion of solar energy to electricity. At present, energy produced by photovoltaic cells is significantly more expensive than that obtained by burning fossil fuels. Therefore, we need to find a method of producing solar cells more cheaply. The prime example of such a cheap solar cell is the dye-sensitized solar cell. However, the efficiency of these cells is currently too low to be commercially interesting. In this project, a process called singlet exciton fission is proposed as a new route to more efficient dye-sensitized solar cells. In this process, a singlet excited state formed by photo-excitation converts into a pair of triplet states by a spin-allowed transition. When both triplet excited states lead to a charge separation event, the theoretical maximum efficiency of dye sensitized solar cells can be increased from 32% to ~46% for a cell combining a singlet fission absorber with a normal dye. This project will have a two-fold benefit: it will be the first major systematic study of the fundamentals of the singlet fission process, and it will explore the use of singlet fission dyes in photovoltaics. Using a variety of disciplines, ranging from organic synthesis to ultrafast spectroscopy and quantum chemical calculations, this project will deliver the clearest picture yet of the exciton fission process. In addition, this research will enable the design of specific chromophores possessing optimal triplet fission yield and, by doing so, will open exciting new possibilities for the production of more efficient dye-sensitized solar cells.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITEIT DELFT
EU contribution
€ 1 199 999,99
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0