Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Graphene nanoribbon based chemical sensors

Objective

Significant progress and novel discoveries have been made in the past two decades in the science of nanometer scale carbon based materials. Novel physical phenomena characterizing low dimensional systems have been discovered leading to the development of prototype devices. Graphene nanoribbons have very recently emerged at the front of this field due to their unique electronic, magnetic and mechanical properties and the ability to fabricate them in a controllable and reproducible manner. Despite the considerable progress that has been made in the controlled fabrication and the understanding of the physical properties of graphene nanoribbons, currently, much less is known regarding their chemical nature. The large surface to volume ratio and the existence of reactive edges are expected to considerably enhance their chemical reactivity with respect to related systems such as carbon nanotubes and infinite graphene surfaces. Thus, understanding the surface and edge chemistry of graphene nanoribbons and utilizing it for chemical sensing purposes is a major challenge. It is the purpose of this research program to address this challenge. To this end, our proposed program will focus on the development and implementation of a new model that will allow the accurate treatment of the electronic and transport properties of finite extended systems such as graphene nanoribbon surfaces. Using this model we will study in depth the process of molecular adsorption on the surface and edges of nanoribbons and its influence on the electronic properties of the ribbon. Furthermore, we propose to study new schemes to control the reactivity of the ribbon and the selectivity of the adsorption process. We believe that the proposed research program will enhance the understanding of the chemical nature of graphene nanoribbons and will provide guidelines for the design and fabrication of novel nanoscale sensing devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TEL AVIV UNIVERSITY
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0