Objective
The Large Hadron collider (LHC) at CERN will be a milestone for the understanding of fundamental interactions and for the future of high energy
physics. Four large experiments at the LHC are complementarily addressing the question of the origin of our Universe by searching for so-called New Physics.
The world of particles and their interactions is nowadays described by the Standard Model. Up to now there is no single measurement from laboratory experiments which contradicts this theory. However, there are still many open questions, thus physicists are convinced that there is a more fundamental theory, which incorporates New Physics.
It is expected that at the LHC either New Physics beyond the Standard Model will be discovered or excluded up to very high energies, which would revolutionize the understanding of particle physics and require completely new experimental and theoretical concepts.
The LHCb (Large Hadron Collider beauty) experiment is dedicated to precision measurements of B hadrons (B hadrons are all particles containing a beauty quark).
The analysis proposed here is the measurement of asymmetries between B_s particles and anti-B_s particles at the LHCb experiment. Any New Physics model will change the rate of observable processes via additional quantum corrections. Particle antiparticle asymmetries are extremely sensitive to these corrections thus a very powerful tool for indirect searches for New Physics contributions. In the past, most of the ground-breaking findings in particle physics, such as the existence of the
charm quark and the existence of a third quark family, have first been observed in indirect searches.
First - still statistically limited - measurements of the asymmetry in the B_s system indicate a 2 sigma deviation from the Standard Model prediction. A precision measurement of this asymmetry is potentially the first observation for New Physics beyond the Standard Model at the LHC. If no hint for New Physics will be found, this measurement will severely restrict the range of potential New Physics models.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics particle accelerator
- natural sciences physical sciences theoretical physics particle physics quarks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2010-StG_20091028
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.