Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Understanding and Exploiting Biological Catalysts for Energy Cycling: Development of Infrared Spectroelectrochemistry for Studying Intermediates in Metalloenzyme Catalysis

Objective

Advanced catalysts for energy cycling will be essential to a future sustainable energy economy. Interconversion of water and hydrogen allows solar and other green electricity to be stored in transportable form as H2 - a fuel for electricity generation on demand. Precious metals (Pt) are the best catalysts currently available for H2 oxidation in fuel cells. In contrast, readily available Ni/Fe form the catalytic centres of robust enzymes used by micro-organisms to oxidise or produce H2 selectively, at rates rivalling platinum. Metalloenzymes also efficiently catalyse redox reactions of the nitrogen and carbon cycles. Electrochemistry of enzyme films on a graphite electrode provides a direct route to studying and exploiting biocatalysis, for example a fuel cell that produces electricity from dilute H2 in air using an electrode modified with hydrogenase. Understanding structures and complex chemistry of enzyme active sites is now an important challenge that underpins exploitation of enzymes and design of future catalysts. This project develops sensitive IR methods for metalloenzymes on conducting surfaces or particles. Ligands with strong InfraRed vibrational signatures (CO, CN-) are exploited as probes of active site chemistry for hydrogenases and carbon-cycling enzymes. The proposal unites physical techniques (surface vibrational spectroscopy, electrochemistry), microbiology (mutagenesis, microbial energy cycling), inorganic chemistry (reactions at unusual organometallic centres) and technology development (energy-catalysis) in addressing enzyme chemistry. Understanding the basis for the extreme catalytic selectivity of enzymes will contribute to knowledge of biological energy cycling and provide inspiration for new catalysts.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 1 373 322,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0