Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

DNA Adduct Molecular Probes: Elucidating the Diet-Cancer Connection at Chemical Resolution

Objective

Bulky DNA adducts formed from chemical carcinogens dictate structure, reactivity, and mechanism of chemical-biological reactions; therefore, their identification is central to evaluating and mitigating cancer risk. Natural food components, or others associated with certain food preparations or metabolic conversions, initiate potentially damaging genetic mutations after forming DNA adducts, which contribute critically to carcinogenesis, despite the fact that they are typically repaired biochemically and they are formed at extremely low levels. This situation places significant limitations on our ability to understand the role of formation, repair, and mutagenesis on the basis of the complex DNA reactivity profiles of food components. The long-term goals of this research are to contribute basic knowledge and advanced experimental tools required to understand, on the basis of chemical structure, the contributions of chronic, potentially adverse, dietary chemical carcinogen exposure to cancer development. It is proposed that a new class of synthetic nucleosides, devised on the basis of preliminary discoveries made in the independent laboratory of the applicant, will serve as molecular probes for bulky DNA adducts and can be effectively used to study and AMPlify, i.e. as a sensitive diagnostic tool, low levels of chemically-specific modes of DNA damage. The proposed research is a chemical biology-based approach to the study of carcinogenesis. Experiments involve chemical synthesis, thermodynamic and kinetic characterization DNA-DNA and enzyme-DNA interactions, and nanoparticle-based molecular probes. The proposal describes a potentially ground-breaking approach for profiling the biological reactivities of chemical carcinogens, and we expect to gain fundamental knowledge and chemical tools that can contribute to the prevention of diseases influenced by gene-environment interactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091118
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 1 500 000,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0