Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Neural codes for space in complex multi-scale environments: Insights from the bat

Objective

Studies of spatial navigation and neural codes for space have followed two parallel tracks over the last 100 years: One research approach was to study animal navigation in the wild over large spatial scales (kilometers); this approach focused on non-mammalian species and on behavioral studies, with hardly any research on the underlying brain mechanisms. The other approach was to study the navigation of mammals (mostly rats) in mazes and small arenas; this approach revealed 'place cells' in the hippocampus, neurons that become active at specific locations; and 'grid cells' in entorhinal cortex – neurons that respond when the animal passes through the vertices of a hexagonal grid spanning the entire environment. However, it is unknown whether place- and grid-cells are relevant at all to large-scale navigation over kilometers. Thus, there is a large gap between the two parallel approaches to studying spatial memory and navigation – both a conceptual gap, and a gap in spatial scale. Here, we propose to bridge this gap, by recording from place cells and grid cells in a flying mammal – the bat – while it moves in 4 different environments of varying sizes, from centimeters to kilometers. We will conduct both standard (tethered) and wireless neural recordings, and will also pioneer the development of a novel sonar-based virtual reality system for studying large-scale navigation. The same neurons will be recorded across different spatial scales, which will allow comparing various neural-coding schemes. These new setups will allow the first testing for the existence of kilometer-sized hippocampal place-fields and entorhinal grids, in bats navigating through naturalistic virtual landscapes; they will also provide rich information on neural codes for 2-D and 3-D space in the mammalian brain. Our innovative project is expected to provide – for the first time – a true understanding of the brain mechanisms of large-scale, realistic navigation in complex 3-D environments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 1 499 999,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0