Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Silicon Nitride Coatings for Improved Implant Function

Objective

Articulating joint replacements represent a medical market exceeding €14 billion p.a. that is expected to rise as demographics reflect an ageing population. However, faster growth has been seen in the revision market, where prosthetic joints are replaced, than in primary interventions. The major cause of these revisions is that all joint replacements are prone to wear leading to loss of implant function. Further, it has been demonstrated that adverse or extreme loading has a detrimental effect on implant performance. Thus, device failure still occurs too frequently leading to the conclusion that their longevity and reliability must be improved. The premise of this proposal is to realise that wear and corrosion are an inevitable consequence of all implant interfaces within contemporary total joint replacements. To overcome this problem our novel approach is to use silicon nitride coatings in which the combined high wear resistance of this material and solubility of any silicon nitride wear particles released, reduce the overall potential for adverse tissue reactions. In this work a variety of silicon nitride based coatings will be applied to different tribological scenarios related to total hip arthroplasty. The coatings’ suitability in each scenario will be assessed against target profiles. In particular, it is important to consider coating performance within each of these applications under adverse conditions as well as those outlined in internationally utilised standards. To accomplish this, cutting-edge adverse simulation techniques, in vitro assays and animal models will be developed together with a suite of computational assessments to significantly enhance device testing in terms of predicting clinical performance. Data will inform new standards development and enhance current testing scenarios, and will provide 5 European enterprises with a significant market advantage, whilst providing data for a regulatory submission which is aligned with Dir 93/42/EEC.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2012-LARGE-6
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

UNIVERSITY OF LEEDS
EU contribution
€ 3 256 581,90
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (14)

My booklet 0 0