Objective
Self-assembly is a spontaneous arrangement of building blocks into ordered structures. Shape of the building block is one of the key factors, determining the structure of resulting assembly. During the process of self-assembly, the building blocks move through thermal motion and, once in contact, adjust their mutual positions and orientations to minimize free energy and form ordered structure. Increasing shape anisotropy of the building block gradually hinders its reorientation during the process and increases the energy barriers. I propose to study the impact of increasing anisotropy of building blocks on their ability to overcome kinetic barriers during self-assembly process and reach equilibrium. Systematic experimental study will be performed with two dimensional Brownian dispersions of platelet microparticles. The platelets will have irregular pentagonal shape of such geometry that allows complete filling of the plane (valid solutions of pentagonal tiling problem). The shape anisotropy of the microparticles will be gradually increased (decreasing symmetry and circularity, increasing complexity of ordered pattern) and the effect on self-assembly kinetics will be evaluated. Proposed study is the first, systematically revealing relation between shape anisotropy and self-assembly kinetics. Its results will enable new fundamental insights into self-assembly of complex shapes.
Proposed self-assembly experiments require large quantities of microparticles of complex shapes and, simultaneously, not larger than a Brownian limit (~micron). Thus, I propose to develop novel low-cost high-throughput synthetic procedure, utilizing stop-flow lithography for production of Brownian silica particles. The host group participance in the project is vital as it is currently the only laboratory in Europe, working with stop-flow lithography. Furthermore, self-assembly is the main research theme in the host group, thus I can rely on their excellence in both parts of proposed project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences medical biotechnology tissue engineering
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.