Objective
Plants, just like animals are highly developed multicellular organisms. In contrast to animal cells however, plant cells are surrounded by a rigid, carbohydrate-rich extracellular layer, the cell wall. This cell wall provides plants with mechanic support and a dynamic chemical signalling and metabolic environment. To allow for cell expansion, cell division, coordinated tissue growth and interactions with the environment, the cell wall status constantly needs to be sensed and modified. How plant cells perceive and signal their cell wall status is poorly understood. Here, I propose an integrated approach to uncover ligands for cell wall sensing receptors as well as their downstream signalling components. Specifically, my project aims to identify the ligands for two genetically validated cell wall receptor families, using a chemical biology approach. Next, we will analyse and validate the mode of ligand-receptor interaction by combining protein X-ray crystallography, quantitative biochemistry and reverse genetics in Arabidopsis. A detailed ligand-binding and receptor activation mechanism will allow us to specifically interfere with cell wall receptor function in vivo, and to assess their biological relevance for cell wall structure and its chemical properties. Using atomic force microscopy, we will then test if the receptors are distributed uniformly at the membrane or whether they are arranged in complex 'sensosomes'. Finally, we will characterize if plant cell wall receptors can directly act as mechanosensors. With defined receptor-ligand pairs and clear phenotypes at hand, we will try to uncover downstream signalling components for plant cell wall receptors and to validate our atomic models in planta. My ultimate goal would be to design and test cell wall receptor agonists and antagonists, which will represent powerful tools to alter cell wall homoeostasis in Arabidopsis, and potentially in crops.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- agricultural sciences agriculture, forestry, and fisheries agriculture
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.