Skip to main content
European Commission logo print header

Understanding and measuring SUb-23 nm particle emissions from direct injection engines including REAL driving conditions

Objective

A large proportion of the total number of particles emitted from direct injection engines are below 23 nm and although the EU aims to regulate those emissions and impose limits for new light duty vehicles, this is not yet possible due to the absence of accurate quantification methods, especially under real driving conditions. The main reason for this is the absence of adequate knowledge regarding the nature of sub-23 nm particles from different engine/fuel combinations under different operating conditions. SUREAL-23 aims to overcome such barriers by introducing novel measurement technology for concentration/size/composition measurements. The recently established supercontinuum laser technology will be coupled to photoacoustic analysis and will also be employed for photoelectric ionization aerosol charging to achieve real-time, composition size-specific analysis of the particles. In parallel, state of the art aerosol measurement techniques will be advanced for better compatibility with sub-23 nm exhaust particles as well as on-board use. The developed instrumentation will assess sub-23 nm particle emissions from both Diesel and GDI vehicles accounting for effects of the fuel, lubricants, aftertreatment and driving conditions for existing and near-future vehicle configurations. The most suitable concepts will be developed for PN-PEMS applications and evaluated accordingly. The project will provide measurement technologies that will complement and extend established particle measurement protocols, sustaining the extensive investments that have already been made by industry and regulation authorities. The project will deliver systematic characterization of sub 23-nm particles to facilitate future particle emission regulations as well as to assess any potential trade-off between advances in ICE technology towards increased efficiency and emissions. The consortium consists of European and US organisations, which are leaders in the field of aerosol and particle technology.

Call for proposal

H2020-GV-2016-2017

See other projects for this call

Sub call

H2020-GV-2016-INEA

Coordinator

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
Net EU contribution
€ 960 750,00
Address
CHARILAOU THERMI ROAD 6 KM
57001 Thermi Thessaloniki
Greece

See on map

Region
Βόρεια Ελλάδα Κεντρική Μακεδονία Θεσσαλονίκη
Activity type
Research Organisations
Links
Total cost
€ 960 750,00

Participants (7)