Objective
I will experimentally investigate hybrid superconductor/semiconductor devices for realizing novel topological states of matter, with interest both in fundamental physics and quantum computing applications. Common denominator of the proposed experiments is a regime where the characteristic energy scales of the system, namely Fermi energy, spin orbit interaction correction, superconducting gap and Zeeman splitting are comparable to each other, resulting in unique and mostly uncharted physical territories. Differently from the most widespread use of semiconductor nanowires coupled to superconductors, I will employ novel hybrid two-dimensional electron gases (2DEGs) where the superconductor is grown in-situ and matched to the semiconductor lattice. This novel system was mainly developed by the team I supervise, during the last two years. Compared to the conventional nanowire-based approach, hybrid 2DEGs are readily available, characterized by very low disorder and more amenable to complex sample designs. The work will focus on: 1) Taking full advantage of the planar geometry to study spatial and non-local properties of individual Majorana wires, as well as branched geometries. These experiments will constitute critical tests to establish if the commonly observed zero bias peaks are indeed associated with Majorana modes and pave the way to complex networks of interacting Majorana wires, a requirement for quantum computing. 2) Studying topological phenomena in multi-terminal Josephson junctions (JJs), with particular emphasis on tuning the superconducting phase difference across electrodes pairs. Topological JJs offer a new and possibly advantageous path forward to create and manipulate Majorana modes not explored up to date, including the possibility to reach the topological regime for vanishing small external magnetic fields, useful for applications. Success of the proposal will constitute a key step forward towards topological quantum computing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences mathematics pure mathematics geometry
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8803 RUESCHLIKON
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.