Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy

Project description

Scientists are getting a solid grasp of charge transfer in innovative battery design

Lithium-ion batteries have become ubiquitous, giving life to all sorts of mobile electronic devices, portable power supplies, power tools, calculators, remote control toys and electric vehicles. Compared to the liquid electrolytes used in lithium-ion batteries, all-solid-state batteries (ASSB) utilise solid electrolytes that are demonstrably safer. In addition, these batteries promise significantly greater energy density. However, charge transfer between solids is much more complex than between liquid and solid and must be well understood to unleash the full potential of ASSB. The EU-funded Electroscopy project is applying high-tech microscopy techniques to characterise the morphological, structural and chemical changes at the solid-solid interfaces during battery operation. Insight will be broadly distributed to encourage innovation and uptake.

Objective

All-solid-state batteries(ASSB) enabled by electrochemically stable solid electrolytes represent a promising alternative to the conventional lithium batteries with liquid electrolytes which jeopardize battery safety. However, the complex charge transfer at solid-solid interfaces greatly limits the electrochemical performance of ASSB. Therefore, a detailed understanding of how the morphology, structure and chemical composition changes at the electrode-electrolyte interfaces and within the solid electrolyte particles and/or across grain boundaries on battery cycling is urgently needed.
In this project, I will utilize operando transmission electron microscopy(TEM) and scanning electron microscopy(SEM), to visualize the morphological, structural and chemical changes across electrode-electrolyte and electrolyte-electrolyte interfaces during battery cycling to develop new insights into ion transfer mechanisms at the atomic scale. For this, utilizing one of the best TEM facilities in the world including the expertise of TEM specialists and availability of sophisticated TEM specimen holders at the Ernst Ruska-Centre in Forschungszentrum Jülich, with state-of-the-art battery materials and battery engineering at Imperial College London and my expertise in designing and performing operando TEM battery studies, I will construct all-solid-state micro-batteries inside TEM and visualize morphological, structural and chemical changes at battery interfaces during (de)lithiation and compare these with that of liquid electrolytes to determine the best battery architecture. To evaluate how such nanoscale processes impact the performance of lab-scale ASSB batteries, SEM-based cells will be employed.
The understanding of interfacial processes that dictate the potential of ASSB and new strategies to improve the battery performance developed from this project will be disseminated to a wide range of audience including battery industries, to advance ASSB technology for sustainable future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

FORSCHUNGSZENTRUM JULICH GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 174 806,40
Address
WILHELM JOHNEN STRASSE
52428 JULICH
Germany

See on map

Region
Nordrhein-Westfalen Köln Düren
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 174 806,40
My booklet 0 0