European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Bright Solitons and Dynamics in Bose-Fermi Mixtures

Objetivo

The study of wave mechanics and propagation in non-linear media is a fundamental concept within physics. In particular, solitons (non-dispersive wave packets) are a general solution to the non-linear wave equation. Their existence is maintained by a non-linear interaction that counteracts the effects of dispersion. We will investigate bright solitons in an ultracold quantum-degenerate Bose-Fermi mixture where the required non-linear interaction is provided by the attraction between the Bose and Fermi components. To date, although theoretically predicted, solitons have not been observed in a Bose-Fermi mixture. To achieve our goal, we will use a Bose-Einstein condensate of the bosonic isotope Rb-87 and a spin-polarised degenerate Fermi gas of the fermionic isotope K-40. As well as being of fundamental scientific interest, the realisation and characterisation of bright matter-wave solitons in a Bose-Fermi mixture could facilitate future experiments in such areas as soliton interferometry and soliton-surface interactions for the development of sensitive surface probes, which would, respectively, have ramifications for the fields of precision measurement and surface science. The experiment will be carried out using an atom chip, an extremely good tool for studying quantum degenerate gases in a low-dimensional system (specifically an effectively 1D system), a proposed requirement for the realisation of bright solitons in Bose-Fermi mixtures. The main goals of the project are to ascertain experimentally under which conditions a Bose-Fermi mixture can be considered as one-dimensional, i.e. can be termed “effectively 1D”; the investigation of a new tool for varying atom-atom interaction strengths; the realisation of bright solitons in a Bose-Fermi mixture; the observation and characterisation of the formation and density profiles of single solitons and soliton trains; and, ultimately, the controlled collision of two bright matter-wave solitons.

Convocatoria de propuestas

FP7-PEOPLE-2007-2-1-IEF
Consulte otros proyectos de esta convocatoria

Coordinador

TECHNISCHE UNIVERSITAET WIEN
Aportación de la UE
€ 160 182,68
Dirección
KARLSPLATZ 13
1040 Wien
Austria

Ver en el mapa

Región
Ostösterreich Wien Wien
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Joerg Schmiedmayer (Prof.)
Enlaces
Coste total
Sin datos