European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Nanotechnology for advanced rechargeable polymer lithium batteries

Objetivo

Nano-particulate electrode materials, electrode materials modified by surface layers in the nm- range (core-shell materials) and nano-structured composite electrodes and electrolytes offer tremendous opportunities to overcome the limitations of current lithium polymer microbatteries, e.g. reduces transport limitations within the materials and to decrease the over-potential required for intercalation/deintercalation reactions. Intelligent composite electrodes require a well-designed spatial distribution o f the various components. Simple mixing does not create optimised percolation patterns of conductive additives or other functional components. Self- assembling of nano-particles on preconditioned surfaces can be used to create optimised 3-dimensional mult i percolation patterns by use of the "binderless" Substrate Induced Coagulation (SIC).

Li4Ti5O12 shows excellent capacity retentions at various C rates and temperatures with a better safety than common electrode materials. This compound in the form of nano-tubes and nano-fibres is characterised by extremely fast Li+-intercalation /deintercalation. Adequate electronic contacts for high-rate operation of these electrode materials can be made by SIC-coating. Increased volumetric energy density on the anode side can be achieved by replacing carbon-based materials by lithium storage metals and alloys as silicon-lithium composite. These alloys have a very high capacity of 570 mAh/g 1 per lithium and per silicon, up to 4.4 lithium.

Lithium insertion/extraction on this material leads to an important volume variation, which causes a capacity fading upon cycling. To overcome this fading the active materials have to be in a nano state. A new separator generation can be designed with a nano organic-ceramic hybrid (O RMOCER). A polymer battery will be realized with these materials and techniques and can be mass- produced after the modification of existing processes and lines at Varta Microbattery.

Convocatoria de propuestas

FP6-2004-NMP-TI-4
Consulte otros proyectos de esta convocatoria

Coordinador

VARTA MICROBATTERY GMBH
Aportación de la UE
Sin datos
Dirección
Am Leineufer 51
HANNOVER
Alemania

Ver en el mapa

Enlaces
Coste total
Sin datos

Participantes (4)