CORDIS - Resultados de investigaciones de la UE
CORDIS

Micro-Technologies and Heterogeneous Advanced Platforms for Implantable Medical Systems

Objetivo

The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.

Convocatoria de propuestas

ERC-2013-ADG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

KATHOLIEKE UNIVERSITEIT LEUVEN
Aportación de la UE
€ 2 452 885,18
Dirección
OUDE MARKT 13
3000 Leuven
Bélgica

Ver en el mapa

Región
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Robert M.O. Puers (Prof.)
Contacto administrativo
Wannes Heirbaut (Mr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)