CORDIS - Resultados de investigaciones de la UE
CORDIS

Multiscale modelling of stimuli-responsive nanoreactors

Descripción del proyecto

La revolución del proceso de catálisis con nanopartículas

El avance y el perfeccionamiento de la nanociencia desempeñan un papel fundamental en numerosas industrias y campos, ya que ofrecen soluciones a problemas existentes y proporcionan opciones alternativas. Entre estos campos de la nanociencia se encuentra la catálisis mediante nanopartículas metálicas, que encierra un gran potencial para producir beneficios sustanciales, sobre todo en relación con la creciente demanda de combustible, remediación medioambiental y fármacos vinculados con el cambio climático. El equipo del proyecto NANOREACTOR, financiado por el Consejo Europeo de Investigación, pretende impulsar la innovación ampliando los límites de la catálisis de nanopartículas. Con el fin de alcanzar este objetivo, el proyecto empleará sistemas portadores del tipo «cáscara de yema» termosensibles, que permitirán mejorar el proceso catalítico y dotarlo de un mayor control y una eficacia reforzada.

Objetivo

The catalysis by metal nanoparticles is one of the fastest growing areas in nanoscience due to our society's exploding need for fuels, drugs, and environmental remediation. However, the optimal control of catalytic activity and selectivity remains one of the grand challenges in the 21st century.

Here, I propose to theoretically derive design rules for the optimization of nanoparticle catalysis by means of thermosensitive yolk-shell carrier systems. In the latter, the nanoparticle is stabilized in solution by an encapsulating, thermosensitive hydrogel shell. The physicochemical properties of this polymeric 'nanogate' react to stimuli in the environment and thus permit the reactant transport and the diffusion-controlled part of the catalytic reaction to be switched and tuned, e.g. by the temperature or the pH. The novel hybrid character of these emerging 'nanoreactors' opens up unprecedented ways for the control of nanocatalysis due to new designable degrees of freedom.

The complex mechanisms behind stimuli-responsive nanocatalysis call for a concerted, interdisciplinary modelling approach that has converged in my group in the recent years. In particular, it can only be achieved by combining my expertise in multiscale computer simulations of solvated polymers with the statistical and continuum mechanics of soft matter structures and dynamics. The key challenge is to integrate the molecular solvation effects and our growing knowledge of hydrogel mechanics and thermodynamics into advanced reaction-diffusion equations for a quantitative rate prediction. In addition, I envision exciting novel phenomena such as a chemo-mechanical 'self-regulated catalysis' or an amplifying 'resonant catalysis', if hydrogel response and fluctuations couple to the chemical output signal.

The expected results and design principles will help our collaborators to synthesize tailor-made, superior nanocatalysts and will advance our understanding of their structure-reactivity relationship.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Aportación neta de la UEn
€ 558 437,50
Dirección
FAHNENBERGPLATZ
79098 Freiburg
Alemania

Ver en el mapa

Región
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 558 437,50

Beneficiarios (2)