Skip to main content
European Commission logo print header

Synthetic Cell Biology: Designing organelle transport mechanisms

Projektbeschreibung

Synthetische Vesikel in lebenden Zellen entwickeln

Zellen enthalten ein komplexes Netz membrangebundener Organellen und Vesikel, die die Synthese, die Verarbeitung und den Transport von Makromolekülen wie Proteinen und Lipiden vermitteln, die zur Sekretion oder zur Verwendung innerhalb der Zelle bestimmt sind. Dieses Netzwerk ist besonders wichtig für verschiedene zelluläre Prozesse, unter anderem bei der Sekretion von Hormonen und der Aufrechterhaltung der zellulären Homöostase. Schwerpunkt des vom Europäischen Forschungsrat finanzierten Projekts ArtifiCell ist das Konzept der Entwicklung neuer Vesikeltransportmechanismen in lebenden Zellen. Die Forschenden schlagen vor, die zentrale Proteinmaschinerie, die an der Bildung, Ausrichtung und Fusion von Vesikeln beteiligt ist, zu verändern. Zu diesem Zweck werden sie synthetische Vesikel auf Phospholipid-Basis und Peptid-Nukleinsäuren einführen, um die sekretorischen Vesikel auf bestimmte Ziele umzulenken.

Ziel

Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology.
But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine.
The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion.
The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.

Finanzierungsplan

ERC-ADG - Advanced Grant

Gastgebende Einrichtung

UNIVERSITY COLLEGE LONDON
Netto-EU-Beitrag
€ 2 200 000,00
Adresse
GOWER STREET
WC1E 6BT London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Camden and City of London
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 200 000,00

Begünstigte (2)