CORDIS - Resultados de investigaciones de la UE
CORDIS

Anionic redox processes: A transformational approach for advanced energy materials

Descripción del proyecto

Nueva tecnología para mejorar el almacenamiento en baterías

Las baterías de iones de litio, la tecnología de almacenamiento de energía más utilizada en la actualidad, almacenan energía eléctrica a través de reacciones redox. Sin embargo, desde 2013, se ha demostrado un prometedor proceso innovador que ofrece una capacidad de almacenamiento de energía notablemente mayor. Por desgracia, esta nueva tecnología aún está en fase de pruebas, pero podría generar beneficios sustanciales. En el proyecto ARPEMA, financiado por el Consejo Europeo de Investigación, se pretende abordar los retos asociados a esta tecnología en evolución mediante una mejor comprensión de sus capacidades. Su equipo ha diseñado un amplio programa de investigación que combina métodos experimentales e informáticos. Este planteamiento permitirá desarrollar materiales para baterías capaces de mejorar de forma considerable la capacidad de almacenamiento de energía.

Objetivo

Redox chemistry provides the fundamental basis for numerous energy-related electrochemical devices, among which Li-ion batteries (LIB) have become the premier energy storage technology for portable electronics and vehicle electrification. Throughout its history, LIB technology has relied on cationic redox reactions as the sole source of energy storage capacity. This is no longer true. In 2013 we demonstrated that Li-driven reversible formation of (O2)n peroxo-groups in new layered oxides led to extraordinary increases in energy storage capacity. This finding, which is receiving worldwide attention, represents a transformational approach for creating advanced energy materials for not only energy storage, but also water splitting applications as both involve peroxo species. However, as is often the case with new discoveries, the fundamental science at work needs to be rationalized and understood. Specifically, what are the mechanisms for ion and electron transport in these Li-driven anionic redox reactions?
To address these seminal questions and to widen the spectrum of materials (transition metal and anion) showing anionic redox chemistry, we propose a comprehensive research program that combines experimental and computational methods. The experimental methods include structural and electrochemical analyses (both ex-situ and in-situ), and computational modeling will be based on first-principles DFT for identifying the fundamental processes that enable anionic redox activity. The knowledge gained from these studies, in combination with our expertise in inorganic synthesis, will enable us to design a new generation of Li-ion battery materials that exhibit substantial increases (20 -30%) in energy storage capacity, with additional impacts on the development of Na-ion batteries and the design of water splitting catalysts, with the feasibility to surpass current water splitting efficiencies via novel (O2)n-based electrocatalysts.

Régimen de financiación

ERC-ADG - Advanced Grant

Institución de acogida

COLLEGE DE FRANCE
Aportación neta de la UEn
€ 2 192 636,25
Dirección
PLACE MARCELIN BERTHELOT 11
75005 Paris
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Paris
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 249 196,25

Beneficiarios (2)