CORDIS - Resultados de investigaciones de la UE
CORDIS

The role of novel opsins in non-visual light detection in the zebrafish brain

Objetivo

Light impacts on life by modulating the physiology and behaviour of most living organisms. Both vertebrates and
invertebrates have developed an extensive and diverse range of photoreceptor structures and photopigments, which
mediate these light responses. Clearly light is used for vision, being detected by specialized rod and cone cells in the retina
and processed by the visual centers of the brain. However, light also regulates many non-visual processes, and novel nonvisual photopigments are regularly being discovered. Recent studies have shown a role for non-visual photoreception in
seasonal responses, activation of DNA repair mechanisms, entrainment of the circadian clock and sleep-wake regulation,
but the mechanisms are far less understood. This phenomenon is particularly extensive in teleosts such as zebrafish, where
all tissues and cells of the adult and larval body are directly light responsive. The purpose of ZNEOPSIN_II is to determine the role that non-visual light detection plays in early development in zebrafish, focusing on neurobiology, the entrainment of the circadian clock and specific aspects of behaviour. I will take advantage of zebrafish, a genetic model organism available at the host lab, a leading zebrafish circadian biology lab at University College London, which is also one of the larger zebrafish research communities in Europe. The latest technical approaches for gene knockdown (CRISPR/Cas genome editing), and luminescent/fluorescent imaging, together with classical molecular biology techniques, will be combined with state of the art behavioural assays developed in zebrafish. The results of ZNEOPSIN_II will provide invaluable insights into the biological significance of non-visual light detection, and the roles played by a range of newly discovered opsins, as well as provide a junior researcher with the best possible training in both molecular biology, functional neurobiology and behaviour.

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

UNIVERSITY COLLEGE LONDON
Aportación neta de la UEn
€ 183 454,80
Dirección
GOWER STREET
WC1E 6BT London
Reino Unido

Ver en el mapa

Región
London Inner London — West Camden and City of London
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 183 454,80