Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Application of Droplet-Based Microfluidics for the Screening of Supramolecular Catalysts

Objective

In this project we propose to develop new methodologies to prepare and screen large libraries of homogeneous catalysts based on supramolecular (self-assembled) ligands using droplet-based microfluidics. Presently, the discovery and design of efficient homogeneous catalysts still relies on time intensive trial-and-error methodology. To overcome these limitations, a new paradigm shift for the discovery of effective ligands relies on the supramolecular self-assembly of libraries of ligand through reversible non-covalent interactions. This significantly increases the potential chemical space within which an optimal ligand set can be found. The full potential of this methodology is impeded by current synthesis and screening techniques which rely on macroscale (mL) trial for all the ligands sets and reaction conditions. One effective strategy to increase the rate at which reactions can be performed at is through extensive miniaturization of the reaction vessel. Recent advances in droplet-based microfluidics have enabled the effective screening of reaction conditions on a nano- to pico- liter scale. We thus propose to develop, in collaboration with a lab-on-a-chip research group, a modular droplet-based microfluidic device which will enable the generation, within a nanoliter droplet, of supramolecular catalyst made up of self-assembled ligands around a transition metal. These catalytic droplets will then be merged with a stream of reactants to form a nanoliter-size reaction size vessel which will enable the catalytic activity of the self-assembled catalyst to be evaluated. The intended outcome of this project is to greatly accelerate the speed at which an active catalyst can be identified at. This will have a broad impact on the chemical community for which screening methodologies have become an integral part of the discovery process (e.g. drug discovery).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITEIT VAN AMSTERDAM
EU contribution
€ 157 733,20
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0