Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

X-ray and electrochemical studies on solid Oxide fuel cells and related materials

Objective

Solid oxide fuel cells will have an important place in future environmentally friendly and efficient energy supply chain. Successful introduction of fuel cell technology to the market requires increased lifetime and improved performance of fuel cells. The current limited lifetime of solid oxide fuel cells appears to be caused by poisoning effects, in particular due to chromium from steel interconnects which is used in fuel cell technology, and due to sulphur impurities in the fuel. The interaction of the fu el cell components like air electrode, fuel electrode, electrolyte and interconnects, is poorly understood on an atomistic or molecular level. More comprehensive knowledge on the processes that take place in fuel cell materials during operation will aid in the design of better fuel cell components.

One promising route to address these issues is to characterize the components with electrochemical and with X-ray techniques. This combination has successfully been applied in lithium ion battery research, but was not applied so far to high temperature solid state electrochemical systems such as solid oxide fuel cells and other high temperature electrochemical devices, such as sensors. This proposal is about the utilization of state-of-the-art synchrotron radiation facilities and techniques in connection with electrochemical experiments. The combination of electrochemical and synchrotron techniques will help understand mechanisms that limit the lifetime and performance of fuel cells. X-ray spectroscopy and scattering at synchrotrons allow to online monitor chemical reactions and structural transformations that take place during fuel cell operation. Knowledge on the oxidation state changes of the transition metals, for instance, is important information which can be measured with X-ray spectroscopy and directly linked to crystal lattice instabilities and subsequent phase transformations, which ultimately cause ageing, fatigue, and failure of fuel cells.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-12
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

EIDGENÖSSISCHE MATERIALPRÜFUNGS- UND FORSCHUNGSANSTALT
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0