Project description
Study could shed light on how catch bonds improve material mechanical properties
A catch bond is a type of noncovalent bond whose dissociation lifetime increases as the tensile force applied to the bond increases. To date, systematic studies on how chemical design approaches affect the mechanics of individual catch bonds or how their collective action improves material mechanical properties are scant. The EU-funded CATCH project plans to tackle these challenges by studying the behaviour of synthetic catch bonds for the first time. The project will systematically explore how the concerted action of a large number of catch bonds within a material leads to improved material properties. Understanding how catch bonds work could benefit mechanical communication between cells in tissue engineering.
Objective
All primary chemical bonds, covalent and supramolecular, weaken under tension. This imposes fundamental limits on the mechanical stability of molecules and their materials. Nature has evolved to secondary bonds that break through these limits and strengthen under tension. These so-called catch bonds, which know no synthetic equivalent to date, are used in Nature as a rule, rather than exception, in scenarios where supramolecular bonds are exposed to large stresses. This change in the fundamental mechanical nature of bonds has a profound effect on the mechanics of the materials in which they are integrated. Yet, to date, there have been no systematic studies that establish how the mechanics of individual catch bonds is programmed by their chemical design or how their collective action results in enhanced mechanics of their materials. As a result, our understanding of the ubiquitous use of catch bonds in Nature is incomplete nor do we have clear guides how their potential can be harnessed in creating bio-mimetic soft materials with programmable mechanics. Project CATCH tackles these challenges by bringing catch bonds to the synthetic domain for the first time. Their de-novo creation gives unprecedented control to establish the design rules for the mechano-activity of single bonds. Moreover, CATCH will systematically explore how the concerted action of many catch bonds within a material lead to material properties that cannot be accessed by any other means, such as the adaptive reduction of strain localisation and the filtering of mechanical signals, which is of crucial importance for mechanical communication between cells in tissue engineering. Through a multidisciplinary approach that builds on my expertise in synthetic and materials chemistry, single-molecule experiments, and multiscale mechanical experiments and modelling, this project will decipher and harness one of Nature’s most ubiquitous, but poorly understood, mechanical design strategies.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6708 PB Wageningen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.