Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Unsupervised Perception

Project description

Machine learning without manual supervision

Today, we can benefit from powerful search engines, medical devices and personal assistants that employ machine learning. However, machines learn new skills via manual supervision. The EU-funded UNION project intends to develop machines that can understand and integrate audiovisual data with little or no manual supervision, paving the way for countless new applications of artificial intelligence. The project will investigate two hypotheses: first, that concepts reflecting intrinsic properties of the natural world can be learned without manual supervision while still being interpretable to a human; second, that given this ability, a machine can gather new skills useful to specific stakeholders from few or no manually annotated examples.

Objective

The aim of UNION is to liberate machine learning, enabling everyone to use it productively and creatively instead of being the demesne of experts. Today, machines must be explicitly taught any new skill via manual supervision, incurring a cost justifiable only for applications of general interest. Thus, as laypeople, we can benefit from powerful search engines, medical devices and personal assistants that are designed by means of machine learning, but we cannot easily teach machines to address our particular professional or personal needs. From recognizing illustrations on Greek vases to building catalogues of store products, machine learning could empower millions of individuals, but current technology cannot scale to these micro-tasks. The goal of UNION is thus to develop machines that can learn to understand audio-visual data with little to no manual supervision, opening up artificial intelligence to countless new applications. To this end, UNION will investigate two key hypotheses. The first is that concepts that reflect intrinsic properties of the natural world, such as detachable objects and their 3D geometry, physics and high-level class, can be learned without manual supervision, while still being interpretable to a human. The second hypothesis is that, given this ability, a machine can pick up new skills useful to specific stakeholders from no or just a few manually-annotated examples. These hypotheses will be validated (1) by developing algorithms that can learn without manual supervision, (2) by endowing machines with advanced general-purpose audio-visual analytical skills, and (3) by using the knowledge already acquired to learn new skills very efficiently, from little data and even less manual supervision. This will be delivered as an open-source package that will demonstrate how one can create open-ended audio-visual analysis software that can be taught a large variety of different tasks with at most lightweight manual assistance.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 311 847,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 311 847,00

Beneficiaries (1)

My booklet 0 0