Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Thermoelectricity in metal-organic perovskites: recycling waste energy heat as electricity

Project description

Metal-organic perovskites for efficient thermoelectricity

Thermoelectric materials can directly convert heat into electrical energy and vice versa. Performant thermoelectric devices could be used to recover waste heat in manufacturing, heavy transportation and cogeneration to reduce energy demand and greenhouse gas footprint. Tin selenide (SnSe) is the most advanced material for next-generation thermoelectrics, due to its high thermoelectric performance and intrinsic layered structure. However, its large scale production is highly expensive. The EU-funded THERMOH project will seek to find efficient thermoelectrics in the class of metal-organic single and double halide perovskites, which are intensely studied due to their photovoltaic efficiency and good electrical properties. They can be produced at low costs at scale, while their lattice vibrations are very anharmonic and tunable, allowing planning low thermal conductivity.

Objective

Thermoelectric materials convert thermal and electrical energy, and performant thermoelectric devices could be used to recover waste heat in manufacturing, cogeneration, and heavy transportation - reducing both energy requirements and greenhouse gases' footprint.
Solid-state cooldown would also change refrigeration technologies, in both efficiency and maintenance. Broadly speaking, a materials' breakthrough in thermoelectrics would have an impact on energy efficiency similar to nitride LEDs for lightning technologies.

Optimal thermoelectrics need to balance the contrasting requirements of good electrical conductivity and low thermal conductivity; nowadays the best bulk thermoelectric approaching the desired efficiency is SnSe. However, large-scale production is too expensive, and applications remain limited to niche markets.

The goal of this project is to find efficient thermoelectrics in the class of metal-organic single and double halide perovskites.
These are intensely studied for their photovoltaic efficiency, thanks also to their good electrical properties; they can be manufactured inexpensively at scale; and their lattice vibrations are very anharmonic and tunable, allowing to engineer low thermal conductivity.
Since the overall number of possible compounds is above 500, there is wide chemical tunability of their properties. However, due to both theoretical and experimental difficulties, thermoelectric efficiency has been investigated only in very few compounds. Thanks to the unique capabilities I have developed during my PhD to study from first-principles materials with very large anharmonic distortions, I will investigate the full chemical space of these perovskites in the quest for the most efficient thermoelectric. Success in the project would bring major advantages to the industrial and economic EU ecosystem, but will also cement my leadership in characterizing and designing electrical and thermal properties of far from equilibrium materials.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 191 149,44
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 191 149,44
My booklet 0 0