Project description
Novel nanotechnology materials that mimic the properties of nucleic acids
Nanomaterials find numerous biomedical applications in diagnosis, drug delivery and implant production. Desirable nanomaterial properties include the ability to self-assemble and fold into defined 3D structures that can recognise specific targets and catalyse reactions. The EU-funded InfoMols project aims to develop synthetic oligomeric molecules that consist of repeating subunits. Researchers wish to replicate the inherent ability of nucleic acids to encode and express chemical information into synthetic nanomaterials that form duplexes through hydrogen bonding. The work is expected to advance the field of nanotechnology and expand its implementation in biomedicine.
Objective
Linear oligomers encoded with a sequence of side-chains that have specific recognition properties are the basis for a range of properties that are the hallmarks of Nature’s nanotechnology: folding, substrate recognition, catalysis, self-assembly, and molecular replication. Nucleic acids are currently unrivalled as the only molecular architecture that embodies all of these properties, and this ability to encode, express and replicate sequence information is the molecular basis for the evolution of life on Earth. The aim of this proposal is to develop synthetic oligomeric molecules that encode and express chemical information in the same way as nucleic acids, via a sequence of recognition sites attached as side-chains to a linear backbone. We have already reported a range of synthetic oligomers that bear no relation to the structures of their biological counterparts, yet show efficient sequence-selective duplex formation via H-bonding interactions and can be used for replication of sequence information via covalent base-pairing interactions. Here hybrid systems are proposed that combine the most successful elements of backbone architecture and oligomerisation chemistry with a mixture of dynamic and kinetically inert base-pairing side-chains to obtain new synthetic systems that show all of the functional properties found in biomolecules. The ability to replicate sequence in recognition-encoded synthetic information molecules will enable exploration of new chemical spaces using directed evolution. These new chemical systems will allow us to evolve synthetic oligomers that fold into stable well-defined 3D structures, bind substrates with high affinity, and catalyse reactions. Programmable abiotic molecular nanotechnology will open a new area of chemistry with huge unexplored potential.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules
- engineering and technology nanotechnology
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.