Project description
Conducting a colloidal particle symphony with light and magnetism
Colloids consisting of particles of one substance dispersed in another are found ubiquitously in chemical and industrial applications from paint and coatings to foods and cosmetics. We understand such colloidal systems in thermodynamic equilibrium quite well. Colloidal systems out of equilibrium – so-called active colloids whose states are maintained by external forces such as light or magnetic fields – are another story. Enhancing our understanding of them will enable rational design and control for numerous high-tech applications. The EU-funded StaMACS project is applying experimental and theoretical methods to shed light on the dynamic interactions in active magnetic colloids. The focus is on crystallisation and melting of colloidal particles as well as changes in the propagation of activity through the crystals.
Objective
The objective of StaMACS is to uncover the dynamics of an active and loosely packed magnetic colloidal crystal. This system will consist of repulsive paramagnetic particles immersed in a bath of light-driven bacteria. We will have two independent ways to tune the interactions: 1) An external magnetic field will control the strength of the dipolar repulsion between colloids. 2) The intensity of light will control the motility of bacteria and thus the particle’s induced activity, both locally and globally. By combining experiments with simulations and theoretical analysis, we will reach a general understanding of this system’s dynamics, study its melting and crystallization transitions and examine how a local change in activity propagates throughout the crystal. Our findings will unveil the properties of a novel out-of-equilibrium system: an active colloidal solid. Furthermore, this work will stimulate theoretical investigation related to the kinetics of such systems, with strong implications on understanding the fundamental process of crystallization in the presence of activity. By a two-way transfer of knowledge, StaMACS will bring numerous mutual benefits to both the researcher and the host institution. Its results will represent a major contribution to the soft and active matter field with direct applications in physics, biology and material science.
Descriptors: Active Matter, Soft Matter, Statistical Mechanics, Magnetic Colloids
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences physical sciences classical mechanics statistical mechanics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.