Project description
Computational chemistry sheds light on the intricacies of fullerene-perovskite interactions
Carbon has long played a starring role in chemistry and biology thanks to its ability to be functionalised at four different bond sites. More recently, molecules made solely of carbon have entered the spotlight. Fullerenes are relatively large all-carbon molecules (more than 60 carbon atoms) that form closed cages or cylinders. In the last few years, their interactions with perovskites, one of the most promising materials for next-generation solar cells, has received growing attention. Fullerene_PSC will apply advanced computational chemistry methods to significantly enhance understanding of these interactions. It could lead to the rational design of solar cells with record-breaking efficiencies at prices that do not break the bank.
Objective
Science is essential to achieve the Sustainable Development Goals implemented in the European Agenda 2030 towards the use of sustainable and clean energy. Solar energy, as the cleanest and the largest exploitable resource of energy, can potentially meet the growing requirements for the whole world’s energy needs beyond fossil fuels. Halide perovskite solar cells (PSCs) are considered as one of the most promising candidates for the next generation solar cells as their power conversion eciency (PCE) has rapidly increased up to 25.2%.
With the goal to boost their commercialization, Fullerenes and derivatives have been introduced in PSC devices to improve the stability, suppress the hysteresis, and reduce the high temperatures commonly used to fabricate these devices. Developing novel fullerene derivatives for improving further the PCE and stability of PSCs is still highly desirable yet challenging. Nevertheless, it is not extensively explored the role of fullerene derivatives in PSC devices and it is still not thoroughly investigated how binding groups of fullerenes interact with perovskite surface and their influence in the electron mobility.
In this project, the state-of-the-art computational chemistry will be used to understand the fullerene-perovskite interactions with the goal to rationally design new fullerene derivatives to improve the stability and efficiency of PSC devices. Density functional calculations will be employed to investigate the fullerene orientation on perovskite surfaces, binding energy, bandgap, the exciton delocalization and charge transfer in the fullerene-perovskite complexes in order to establish descriptors and correlations with the experimental data. The descriptors will be used to predict the preferred functionalization of fullerenes in order to conscientiously design the fullerene derivatives for PSC devices in order to take a step forward towards the future commercialization of these low-cost solar cell devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- natural sciences physical sciences quantum physics quantum field theory
- natural sciences computer and information sciences computational science multiphysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
17004 GIRONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.