Skip to main content

From biomass to compact inkjet-printed micro-supercapacitors: ink development, device printing and performance evaluation

Objective

Micro-supercapacitors (MSCs) are efficient power sources for miniaturized wearable/portable gadgets; a projected global market of over € 35 billion by 2025. However, MSCs still suffer from high-cost, low dimensional accuracy, and complexity in the fabrication process. This project aims to develop high performance, low-cost, greener compact MSCs through inkjet printing technology. To this end, we will develop a lignin-derived nitrogen-doped activated carbon ink and print the MSCs on flexible substrates. Subsequently, the compact size of MSCs will enable us to print a high number of MSCs into a small footprint area and connect them in-series/in-parallel. This will assist us to alter the cell voltage and capacitance. In addition, to get new insights into the effect of electrode properties on electrode/electrolyte decomposition and cycle stability, we will investigate the lignin-based carbon properties and electrode/gel electrolyte interface using advanced characterization techniques e.g. XPS, NEXAFS, XANES. The world-leading expertise of Prof. Magda Titirici (host); and the state-of-the-art facilities at Imperial College London, provide the perfect environment to successfully host my project despite its challenging nature.

Call for proposal

H2020-MSCA-IF-2020
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Address
South Kensington Campus Exhibition Road
SW7 2AZ London
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 224 933,76