Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Improving Subseasonal and Seasonal sUmmer forecast over southern Europe through machine Learning

Description du projet

Améliorer la prévision de la fréquence et de l’intensité des vagues de chaleur en Europe du Sud sur des échelles de temps S2S

Pour répondre au besoin de prévisions météorologiques fiables au-delà de l’échelle hebdomadaire, la communauté scientifique a développé des modèles de prévision sous-saisonniers à saisonniers (S2S). Cependant, ces modèles comportent encore des limites en ce qui concerne les étés en Europe. Bien que l’Europe du Sud soit vulnérable aux vagues de chaleur à fort impact et sensible au changement climatique, cette région a jusqu’ici été beaucoup moins étudiée que les autres. Le projet ISSUL, financé par l’UE, entend améliorer la prévision S2S de la fréquence et de l’intensité des vagues de chaleur ainsi que les modèles météorologiques qui y sont associés portant sur l’Europe du Sud. Le projet s’appuiera sur une combinaison de deux algorithmes d’apprentissage automatique: un algorithme d’optimisation pour identifier le meilleur ensemble de prédicteurs et un réseau neuronal pour fournir des prévisions non linéaires. Ce sera la première fois qu’une telle approche est adoptée pour ces échelles de temps.

Objectif

In the recent years, the continual improvements of weather forecasting models and the sustained need for reliable weather predictions beyond the weekly timescale resulted in the development of subseasonal to seasonal (S2S) forecast models and an intense research work from the scientific community. Despite the large number of research studies, S2S forecast models still show a limited skill in summer over Europe. In addition, southern Europe, has received much less attention, even though it is highly vulnerable to high-impact summer heatwaves, and very sensitive to climate change. The aim of this project, ISSUL, is to better understand and improve the S2S prediction of heatwave frequency and intensity and their associated weather patterns over southern Europe. To do this, a combination of two machine learning algorithms, an optimisation algorithm, to identify the best set of predictors, and a neural network, to provide non-linear predictions will be used. This approach has never been attempted before for these timescales. It is expected to perform better than standard S2S forecast models in predicting heatwave frequency and intensity and associated weather patterns and to bring larger improvements compared with traditional statistical forecasts that do not identify all the predictors and cannot represent non-linear complex interactions.
ISSUL is divided into three parts. The first part aims at identifying the best set of predictors, using the optimisation algorithm, at evaluating it and understanding it is related to heatwaves over southern Europe via a dynamical analysis. The second part aims a predicting the frequency and intensity of heatwaves and associated weather patterns using a neural network. The third part aims at evaluating the performance of this combined machine learning approach compared with standard S2S forecasting model.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 160 932,48
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 160 932,48
Mon livret 0 0