Objective
Hydrogen is enjoying a renewed and rapidly growing attention in Europe and around the world. The most important advantage of hydrogen usage is that it does emit greenhouse gases. The EU's priority is to develop renewable hydrogen where the H2 is produced from the electrolysis of water, with the electricity stemming from renewable energy. This meets the goal of net-zero greenhouse gas emissions by 2050. There are two options for hydrogen usage. One is the drop-in approach, where only a limited amount of H2 can be added to the fossil fuel to reuse the existing chambers, due to the very different properties of H2. However, this option still emits a large amount of greenhouse gases. The other one is to redesign the existing chambers to burn substantial H2. The most challenging issues for burning substantial H2 are the strong differential diffusion and its induced instabilities. The state-of-the-art combustion model cannot capture these phenomena with accuracy, particularly when they further interact with turbulence. The aim of this proposal is to develop and validate such a model to close this gap. The model will be based on a flamelet approach, and a novel machine learning technology will be introduced to consider the differential diffusion (objective 1). To model the positive and negative curvatures in the unstable premixed H2 flame, a novel flamelet model will be developed based on the detailed a priori and a posteriori analyses of the state-of-the-art DNS datasets (objective 2). Finally, the developed flamelet model will be extended to LES with the differential diffusion and curvature related sub-grid scale (SGS) effects being considered with the artificially thickened flame (ATF) model. Particularly, the SGS effects will be considered by modifying the efficiency function. LES will be conducted for the DNS configuration and a turbulent methane flame with substantial H2 addition using the developed flamelet model coupled with the modified ATF approach (objective 3).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1050 Bruxelles / Brussel
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.