European Commission logo
English English
CORDIS - EU research results

Understanding and exploiting competitive solvent interactions in supramolecular polymerization: from solutions to bulk materials

Project description

Investigating competitive solvent interactions in supramolecular polymerisation

Supramolecular chemistry involves the organisation of molecules into larger, higher-order structures. Supramolecular polymers, created from the assembly of monomer units through non-covalent interactions, have intriguing properties that render them suitable candidates for a plethora of applications ranging from tissue engineering to optoelectronics. Funded by the Marie Skłodowska-Curie Actions programme, the SolSupPol project aims to shed light on how chiral solvents affect supramolecular polymerisation, which is still poorly understood. In particular, the project will investigate how solvent interactions affect the helical bias and thermal behaviour of supramolecular polymers in the solutions. Studying both macroscopic solvent effects and their molecular origin, researchers could achieve unprecedented control over solvent interactions in supramolecular polymerisation reactions.


During the last three decades, tremendous progress has been made in the field of Supramolecular Polymers (SPs), and several fundamental issues have been disclosed. As a result, these materials are reaching technological maturity. The intrinsic dynamicity and responsive properties of SPs render them intriguing candidates for a plethora of applications, ranging from life-like systems to optoelectronics. Thus, investigation on SPs is expected to have a profound impact on the knowledge-based society.
Remarkably, the role of solvent in supramolecular polymerization is still poorly understood. The current picture of solvent effects on SPs is fragmented and mainly descriptive. With SolSupPol, I propose a detailed study of the role of competitive solvent interactions in the helical bias and thermal behaviour of SPs in solution, based on the use of chiral solvents. Combining a systematic investigation on solvent effects at a macroscopic level with a microscopic study of their molecular origin, an unprecedent control over competitive solvent interactions in supramolecular polymerization will be achieved. Hence, I aim to exploit solvent effects to tune the properties of SPs in the bulk. These findings will constitute a proof-of-concept, revealing emerging solvent-induced structure-property relationships in the solid state. The project includes the synthesis of a library of monomers, the empirical and theoretical study of their assembly in solution, the preparation and characterization of thin films, and the probing of the spin-filtering and long-range exciton transfer properties of solvent-induced chiral supramolecular structures in the bulk.
The outcomes of this project will enable the design of tailored interactions between SPs and solvents and will foster the development of functional, adaptive materials based on solvent effects. Dissemination and communication activities will guarantee the great impact of SolSupPol.


Net EU contribution
€ 175 572,48
5612 AE Eindhoven

See on map

Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Total cost
€ 175 572,48