Project description
Structural and physiological basis of colour vision in the dark
Most vertebrates cannot discriminate colours in the dark, as their retinal rod photoreceptors are not capable of spectral comparisons. However, frogs and salamanders have additional blue-rod type photoreceptors, allowing rod-based colour discrimination. Recent behaviour studies demonstrated that frogs are able to make spectral comparisons down to the absolute visual sensitivity threshold. Funded by the Marie Skłodowska-Curie Actions programme, the COLOURFUL DARKNESS proposal aims to establish the ecological relevance of nocturnal colour vision and the structure and function of the retinal circuitry underlying rod-rod spectral comparisons. The researchers will capitalise on their previous frog studies and utilise natural scene imaging, high-throughput multi-electrode array recordings from 1 000 retinal ganglion cells, and synaptic-resolution serial section electron microscopy of the blue sensitive rod circuitry.
Objective
Most vertebrates, including humans, cannot ‘see colour in the dark’ because the retinal rod photoreceptors that mediate vision in dim light usually come in a single spectral flavour (“green”), precluding spectral comparisons. But frogs and some salamanders have an additional ”blue”-rod type, potentially allowing for purely rod-based colour discrimination. Using behaviour, I recently demonstrated that this is indeed the case: frogs do make spectral comparisons down to the absolute visual sensitivity threshold. However, the ecological relevance of nocturnal colour vision and the structure and function of the retinal circuitry underlying rod-rod spectral comparisons, and enabling the simultaneous preservation of sensitivity and spectral resolution, have not been explored.
Thus, this proposal seeks to establish the purpose as well as the underlying retinal physiology and circuit implementation of frog colour discrimination near the visual threshold. For this, we will combine natural scene imaging, high-throughput multi-electrode array recordings from 1,000s of retinal ganglion cells and synaptic-resolution serial section electron microscopy of the blue-sensitive rod circuitry. This will enable unraveling which visual information is available to be used, and how it is processed, to reach the low-light limits of colour discrimination performance available to the vertebrate eye. Our research will also provide a link between the more intensely studied retinal circuits of fish and mammals, providing important insights about the evolution of vertebrate retinal networks’ architecture and computations. Finally, the topic of ‘colour vision in the dark’ is one that attracts considerable public interest, so this project will create valuable opportunities for public engagement with the research supported by the European Commission.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences physical sciences optics microscopy electron microscopy
- medical and health sciences clinical medicine ophthalmology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BN1 9RH BRIGHTON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.