Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

A stem cell-based approach for modelling implantation in vitro

Project description

A stem cell-based platform for modelling embryo implantation

The implantation is a complex and timely coordinated process of the first physical contact between the embryo and the uterus, which results in embryo attachment that is crucial for healthy pregnancy outcomes. Ability to manage embryo implantation has broad public health implications, including infertility treatment and contraception improvement. Funded by the Marie Skłodowska-Curie Actions programme, the IMPLANTATION project aims to apply single-cell sequencing, endometrial organoids and blastoid technologies to create a stem cell-based platform to simulate the blastocyst-uterus interaction and uncover molecular mechanisms mediating implantation. This platform will be accessible to high-throughput screening, gene editing, and live imaging, enabling the identification of the molecular regulators of implantation.

Objective

The first physical contact between the embryo and the uterus is a complex and timely coordinated process, which is crucial for positive pregnancy outcome. During that process of implantation, the embryo attaches and invades to nest into the uterus. Managing embryo implantation has wide implications for public health, including treating infertility (e.g. improving IVF outcomes) and for family planning (improving contraception). However, the tiny size of the embryo and inaccessibility into the womb make implantation a true black box in developmental biology. Three technological breakthroughs, i.e. single cell sequencing, endometrial organoids and blastoid technologies, now made it possible to deeply and finely investigate implantation. Here, I aim at leveraging these technologies to create a stem cell-based platform to model the blastocyst-uterus interaction and to reveal molecular mechanisms mediating implantation. This platform will be amenable to high-throughput screening, gene editing, and live imaging, to identify the molecular regulators of implantation. If successful, this study will provide a biologically relevant, easily accessible and experimentally amenable system to perform in-depth studies with scientific and clinical impacts to understand and potentially treat conditions such as infertility, reproductive decline, develop novel contraceptive and in the long term, to develop drugs to improve reproductive health and prevent several chronic diseases.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 174 167,04
Address
DR BOHRGASSE 3
1030 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 174 167,04
My booklet 0 0