Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

On-chip Phase and Polarization Engineering of GaN-based blue/UV VCSELs via Metasurfaces

Project description

Seeing blue: on the road to new laser technology exploiting 2D metamaterials

Manipulating, controlling and sensing the interaction of light with matter underlies numerous technologies, many of which rely on lasers. Vertical cavity surface-emitting lasers are semiconductor lasers that rely on quantum wells for powerful light emission perpendicular to the wafer surface (in contrast to edge-emitting lasers or light-emitting diodes that emit from the sides or sides and top, respectively). They have unique optoelectronic properties and harness established wafer-fabrication technology for low-cost large-scale manufacture. However, extending their spectral range into the blue and ultraviolet range has been challenging. With the support of the Marie Skłodowska-Curie Actions programme, the MetaVCSEL project is developing technology to achieve this via on-chip beam shaping based on the integration of novel 2D metamaterials.

Objective

Vertical cavity surface-emitting lasers (VCSELs) play a key role in the development of modern optoelectronic technologies, thanks to their unique characteristics such as low power consumption, high modulation speed, and large-scale two-dimensional array capability. To further expand the spectral range of VCSELs from the red/near-infrared region down to the blue/UV region is attracting significant interest. This will lead to versatile applications in for example retinal scanning displays, visible light communications, chemical sensing, and sterilization of viruses and bacteria. However, blue/UV VCSELs are suffering from poor beam quality and unstable polarization property due to the lack of effective beam shaping solutions. The recent advances in two-dimensional metamaterials, also known as metasurfaces, open new perspectives for the manipulation of light properties, including amplitude, phase, and polarization with exceptional subwavelength spatial resolution. In particular, the ultra-thin, flat, and compact characteristics of metasurfaces greatly facilitate their integration with semiconductor laser for the development of a miniaturized laser system with a controllable optical wavefront. Seizing on the timely opportunities provided by the latest metasurface technologies, this project aims to develop the very first solution for on-chip beam-shaping blue/UV VCSELs by exploiting metasurface optoelectronic integration, which will unlock the potential to tailor both the phase and polarization properties of blue/UV lasers at an ultra-compact wafer-level. This will give rise to high beam quality lasers with small divergence angle and vector lasers in the blue/UV regime, paying their way toward real-world applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

CHALMERS TEKNISKA HOGSKOLA AB
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 203 852,16
Address
-
412 96 GOTEBORG
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 203 852,16
My booklet 0 0