Project description
Earthquake-resilient hybrid structures
Earthquake engineering aims at minimising structural damages and preventing the collapse of buildings. However, severe earthquake motions still result in injuries, fatalities, losses due to structural and non-structural damages, and long-term business interruptions. Moreover, earthquakes often induce large residual drifts that may jeopardise both operativity and repairability of structures. There is an urgent need for innovative structures that promote seismic resilience through mitigating earthquake damages, reducing residual drifts, and enabling quick repair. The EU-funded SC-HYBWalls project will develop an innovative structural configuration based on a new self-centring mechanism combined with hybrid steel-concrete structural systems to enable energy dissipation capacity, minimal damage, and residual drifts’ reduction, thus allowing immediate reoccupation after moderate earthquakes and facilitating repair after severe ones.
Objective
Control of both structural and non-structural damage is of utmost importance in Performance-Based Earthquake Engineering. Alleviation of the structural damage and reducing collapse risk under sever ground motions has been a general research focus in earthquake engineering. However, earthquake reconnaissance reports also foreground the significance of injuries, fatalities and economical losses due to failure of non-structural components. Furthermore, the functionality of some critical buildings carrying acceleration-sensitive equipment such as hospitals can be interrupted due to non-structural damage after a seismic event. Therefore, it is vital to urgently meet an inevitable social demand for truly resilient construction. In target resilient buildings, both structural and non-structural damage should be minimized simultaneously in order to mitigate direct and indirect losses such as repair costs and costly downtime during which the building cannot be used or occupied. Different strategies have been implemented by researchers to mitigate the structural and non-structural damage. As an instance, self-centering frames have been developed with the aim of avoiding residual drifts after a seismic event. Meanwhile, hybrid steel-concrete frames consisting of coupled walls with controlled energy dissipation mechanism have recently grabbed a lot of attentions since they take the advantage of both stiffness of RC walls and the ductility and energy dissipation capacity of steel components. The aim of this project is to develop and investigate a novel resilient structural system in which a self-centering mechanism is coupled with hybrid steel-concrete structural systems. Hence, the new system will be capable of resisting moderate to high intensity ground motions while both structural and non-structural damages are kept minimum simultaneously. Employment of this novel earthquake resilient structural system also leads to sustainable, fast and simple construction.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences geology seismology
- social sciences economics and business business and management employment
- social sciences sociology governance crisis management seismic risk management
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.