Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

3D architectures of Mxenes for Terahertz Applications

Project description

Integrating 2D nanomaterials and 3D printing enhances terahertz detection technology

The terahertz band of the electromagnetic spectrum is the last largely unexploited region. Located between the microwave and infrared wavelengths, terahertz waves are non-ionising, can penetrate many opaque materials, and can also stimulate molecular and electronic motion. These properties make them useful in areas such as detecting explosives or weapons, screening for cancer, and sensing a variety of biological and chemical components non-invasively and harmlessly. Until now, their commercial application has been hindered by technical challenges limiting performance and size. With the support of the Marie Skłodowska-Curie Actions programme, the 3D-AM-TERA project is integrating exciting 2D nanomaterials and ultramodern 3D printing to overcome barriers to widespread uptake.

Objective

The terahertz (THz) region of the electromagnetic spectrum finds application in different areas such as security checks, biology, detection of drugs and explosives, imaging and astronomy. The state-of-the-art THz detectors lack high sensitivity, fast operation, and portability. The proposed work will explore the possibility of significantly advancing the THz radiation detection process by using 2D MXene materials combining advanced developments in two frontier research areas, 3D printing of 2D materials with dedicated investigation on their ultrafast far-field and near-field THz spectroscopic properties. MXenes are nanometer thick conductive sheets and their interaction with the THz radiation can be strengthened by arranging them into a 3D pattern. To address the concept of novel devices made of MXene sheets with enhanced light-matter interaction, I propose to develop 3D printing technology able to create a sample interaction area with specifically arranged 2D sheets in 3D structures exhibiting complex percolation pathways, where all the atoms will be exposed to the THz light. This will allow maximum photon absorption in the entire photoactive assembly and thereby maximum photocurrent generation.

The project will answer questions of key intrinsic parameters of layered MXenes (attached functional groups, doping, defects) and of the role of the 3D structuring for optimizing the THz response and, ultimately, to what extent the 3D printing of 2D MXenes can fill the THz gap in the development of novel devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

FYZIKALNI USTAV AV CR V.V.I
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 156 980,64
Address
NA SLOVANCE 1999/2
182 21 Praha 8
Czechia

See on map

Region
Česko Praha Hlavní město Praha
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 156 980,64
My booklet 0 0