Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Hard probes of heavy-ion collisions

Project description

Characterising quark–gluon collisions after the Big Bang

As far as we know, everything in our universe is made of only 12 fundamental matter particles and four fundamental force particles. Their combinations enable our physical, chemical and biological world, and it all started with the Big Bang. For a few millionths of a second afterward, way before life as we know it was formed, the universe was filled with a very hot, dense soup dominated by quarks (matter particles) and gluons (carriers of the strong force), the so-called quark–gluon plasma (QGP). With the support of the Marie Skłodowska-Curie Actions programme, the HPOFHIC project is using experimental and computational methods to better understand how colliding high-energy quarks and gluons behaved in the QGP.

Objective

Heavy-ion collisions at collider energies are performed in order to produce and study QCD matter at high temperature, the quark-gluon plasma (QGP). Such an extreme state of matter is believed to have existed during the first microseconds after the Big Bang. The QGP and properties of strong force can be probed on a variety of length scales by jets, collimated sprays
of particles originating from scattered quarks and gluons. The intent of this proposal is to study how high-energy quarks and gluons interact with the QGP and to better understand the mechanism of energy loss as they traverse the QGP. The investigators will focus on studies of jet substructure using contemporary substructure techniques as well as exploiting the role of flavour, jets size, and path-length dependence using new probes involving boosted objects. The project includes both experimental measurements and phenomenological investigations using existing models and their improvement.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERZITA KARLOVA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 156 980,64
Address
OVOCNY TRH 560/5
116 36 Praha 1
Czechia

See on map

Region
Česko Praha Hlavní město Praha
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 156 980,64
My booklet 0 0