Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Self-disinfecting Photodynamic Catheters to Prevent Nosocomial Infections

Project description

Photoactive technology for the prevention of hospital-acquired urinary tract infections

The most common hospital-acquired, or nosocomial, infections involve the urinary tract and are associated with catheterisation. They complicate patients’ recovery, significantly increasing overall treatment costs. Funded by the Marie Skłodowska-Curie Actions programme, the PHOTOCATH project aims to develop self-disinfecting photoactive urinary catheters to address this type of infection. The innovative application will include low-power super-bright LEDs and laser diodes, highly transparent biocompatible polymers with surface functionalisation capability, and photosensitising dyes for the generation of large amounts of singlet oxygen upon illumination. The light-activated production of the reactive oxygen species will assist in the destruction of microorganisms and biofilms, without damaging any intact cells that are not in contact with the catheter.

Objective

"Catheter-associated urinary infections (CAUTIs) are among the most common nosocomial infections, leading to substantial morbidity and mortality. They prolong hospital stays and significantly increase the economic cost of the disease. Despite the many techniques that have been developed to prevent them, spanning from the training of health professionals to the intraluminal use of antibiotics or ""classical"" microbicide coatings, the problem is still largely unsolved. A smart strategy to address the problem would be the development of a universal microbicide coating that only exercises its effect on the indwelling catheter when activated with visible light travelling through the catheter itself, the latter playing as a hollow optical fibre if made of transparent polymer. In this context, we aim to prepare self-disinfecting photoactive (urinary) catheters using the advanced components that modern chemistry and technology provide us, namely, (i) low-power super-bright cheap LEDs and laser diodes, (ii) highly transparent biocompatible polymers (silicones), (iii) versatile surface functionalisation techniques (plasma, silanisation) and (iv) tailored photosensitising dyes capable of generating large amounts of singlet oxygen upon illumination. This reactive oxygen species leads to the destruction of the microorganisms and, therefore, the incipient biofilm (antimicrobial photodynamic inactivation, aPDI), leaving unharmed any cell not contacting the catheter. The combination of the researcher knowledge (photochemistry, dye derivatisation and photodynamic effect), and some of the strongest areas of expertise within the host groups and collaborators (applied photonics, silicones and microbiology), provides all the necessary tools to tackle this challenging interdisciplinary proposal. The project success will benefit both the researchers involved and the entire society, as it contributes to overcome the problem of CAUTIs occurring in hospitals and long-term care facilities."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSIDAD COMPLUTENSE DE MADRID
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 160 932,48
Address
AVENIDA DE SENECA 2
28040 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 160 932,48
My booklet 0 0