CORDIS - Résultats de la recherche de l’UE
CORDIS

Colloidal two-dimensional InP nanocrystals

Description du projet

Une nouvelle voie de synthèse chimique vers des points quantiques sans cadmium

Les nanocristaux semi-conducteurs colloïdaux, ou points quantiques, ont suscité un vif intérêt dans les milieux universitaires et industriels en raison de leurs propriétés optiques et électroniques uniques. Les points typiques sont constitués de composés binaires qui contiennent souvent du cadmium, une substance toxique qui empêche leur utilisation dans les produits de consommation. Les récentes avancées dans la synthèse des points quantiques de phosphure d’indium en font une alternative sans cadmium prometteuse. L’obtention d’un spectre d’émission de fluorescence étroit constitue un paramètre essentiel pour leur utilisation dans des dispositifs émetteurs de lumière. Financé par le programme Actions Marie Skłodowska-Curie, le projet InPlane développe une nouvelle méthode de synthèse chimique de nanoplaquettes bidimensionnelles de phosphure d’indium. L’accent sera mis sur la recristallisation de petits nanocristaux de phosphure d’indium et sur l’échange de cations.

Objectif

Colloidal semiconductor nanocrystals (NCs) attract immense interest both from the scientific community and industrial companies/startups, due to their unique optical properties that are tunable in a wide range through changing their composition, size, shape, etc. However, currently, the implementation of the well-developed NCs in consumer products is hindered by the presence of toxic cadmium and the development of “Cd-free” NCs, investigation and optimization of their properties are important challenges in the field. Among the most promising “Cd-free” alternatives are indium phosphide (InP) NCs but despite all advances in their synthesis, there is still a need to achieve narrow fluorescence of such NCs – a parameter crucial for their applications in light-emitting devices (e.g. in displays).
In this project, we propose a novel approach to solve this issue, which consists in the chemical synthesis of two-dimensional InP nanoplatelets (NPls). To achieve this, two strategies will be examined: recrystallization of small InP NCs and cation exchange. The research of the first strategy will involve studying precursor reactivity, searching for a suitable promoter of anisotropic growth, and on the optimization of the reaction conditions. The cation exchange strategy will focus on the investigation of the incorporation of indium ions into the pre-synthesized Cu3-xP NPls to achieve complete cation exchange. In the next stages, further work will concentrate on the optimization of obtained NPls for practical applications through achieving spectral tunability by alloying and through maximizing photoluminescence quantum yield and stability by covering InP NPls with a wide bandgap shell. Additionally, to demonstrate the application potential of the prepared NPls and related heterostructures the extensive characterization of chemical and physical properties of InP NPls will be conducted with the specific focus on the properties relevant for light-emitting applications.

Coordinateur

TECHNISCHE UNIVERSITAET DRESDEN
Contribution nette de l'UE
€ 162 806,40
Adresse
HELMHOLTZSTRASSE 10
01069 Dresden
Allemagne

Voir sur la carte

Région
Sachsen Dresden Dresden, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 162 806,40