Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Single Exciton Transistor based on van der Waals Heterostructures

Project description

Spinning into control: enhancing electron–photon interactions with excitons

Interactions between matter and light on the scale of single atoms or electrons and photons have opened the door to a greater understanding of quantum phenomena as well as a wealth of applications. When it comes to quantum information processing, the interaction is necessary to the control, integrity and distance required for a super-efficient data traffic highway. However, electron–photon interaction is weaker than desired. Excitons, strongly bound electron-hole pairs, interact quite strongly with light. The EU-funded SingExTr project is harnessing the unique properties of excitons in single-exciton transistors for excitonic transport with just the right properties for a wealth of applications.

Objective

The spin degree of freedom of an electron captures the essence of quantum mechanics. Via a phenomenon called Coulomb blockade, electrons can be loaded one-by-one into a microscopic device, and their spin can be probed by electrical or optical readouts, satisfying some criteria to construct a quantum processor.

Unfortunately, electrons interact indirectly with light (photons), essential for ultra-fast coherent control and to communicate the quantum information over long distances. Conversely, an exciton – a quasiparticle consisting of a strongly bound electron-hole pair in a semiconductor – interacts with light very strongly. With the emergence of atomically thin semiconductors which have exciton binding energies and Coulomb interactions ~ 100x larger than traditional semiconductors such as GaAs, it is possible to engineer a single exciton transistor. In this fellowship, I propose to pursue excitonic transport and controlled electrostatic trapping of single excitons. To realize such devices, I will stack atom-thick flakes together to form 2D heterostructures which allow separation of the electron and hole into different layers, creating an interlayer exciton which has a long lifetime, a large permanent dipole, and convenient energy scales. The interlayer excitons can strongly interact with each other, providing the repulsion energy to realize excitonic Coulomb blockade. Success in this endeavor opens a path to realizing novel sources of single photons, entangled photons, and efficient spin-photon interfaces.

This Fellowship will offer me the opportunity to acquire new skills regarding magneto-optical spectroscopy, quantum optics, transport device design and fabrication. It builds on my PhD project, where I focused on intralayer excitons in 2D materials and heterostructure fabrication. This project exploits my strong background in material/device preparation and marries it with quantum optics, which is the expertise of host group.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

HERIOT-WATT UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
RICCARTON
EH14 4AS Edinburgh
United Kingdom

See on map

Region
Scotland Eastern Scotland Edinburgh
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0