Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Computational Design of Materials for Photocatalytic Hydrogen Generation and Separation

Project description

Computational models find a way to make sure hydrogen and oxygen keep their distance

Meeting the world’s growing energy demands sustainably is one of our greatest challenges. Large-scale hydrogen production via photocatalytic water splitting into its constituents hydrogen and oxygen is a promising technology with little to no greenhouse gas emissions. However, there are challenges as well as cost and safety concerns associated with separating hydrogen gas from oxygen gas. With the support of the Marie Skłodowska-Curie Actions programme, the Sol2H2 project is developing computational models to investigate a potential solution. To that end, it focuses on nanocomposite catalyst materials based on two-dimensional graphene-like materials with selective proton permeability to prevent the undesirable reverse reaction.

Objective

Hydrogen energy is treated as a promising renewable green energy source for the worldwide growing energy demands. To produce this sustainable energy, photocatalytic water splitting has attracted wide attentions. However, it suffers from a bottleneck problem originated from the readily mixture of hydrogen and oxygen species, which poses safety issue and undermines yield of hydrogen and oxygen molecules, thus hindering its large-scale practical applications. To tackle this challenge, we plan to design nanocomposite structures based on low-dimensional graphene-like materials for photocatalytic hydrogen production and separation via the theoretical simulations. The unique structural feature endows low-dimensional nanomaterials with excellent physical and chemical properties for catalytic reaction. Importantly, thanks to the selective permeability of protons, the atomically thin graphene-like materials can be used as a sieve to isolate the hydrogen molecules generated by protons reduction from the oxygen species, preventing the serious reverse reaction. Through our project, we aim to establish a rational design principle for the optimal catalysts screening and achieve the atomic-level structural design and manipulation of low-dimensional based materials with excellent performance. In addition, as the proton penetration is the central part to bridge the proton generation process and hydrogen production, we also want to identify the mechanism of proton tunneling and improve the proton penetration rate for the further applications. This Sol2H2 project provides an efficient and imperative approach for both fundamental research and practical application in hydrogen energy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 162 806,40
Address
BAUTZNER LANDSTRASSE 400
01328 Dresden
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 162 806,40
My booklet 0 0