Project description
Sophisticated on-chip photonic devices based on neural networks
Complex and multi-functional integrated photonic systems are critical enablers for modern communication systems. With thousands of degrees of freedom, blank-slate algorithms allow further increases in the complexity of photonic systems, but their use is computationally prohibitive for the modelling of relatively large photonic devices with arbitrarily complex functionality. Funded by the Marie Skłodowska-Curie Actions programme, the NeuroPhotonics project will develop universal photonic neural network architecture and an optimisation framework to demonstrate on-chip photonic devices with previously elusive arbitrary functionalities.
Objective
As data generation and transfer rates have grown rapidly over the last decades, integrated photonic systems have become the key technology enabling modern communication systems. In order to sustain future economic and societal growth, continued development of arbitrarily complex and multi-functional integrated photonic systems is therefore imperative. Traditional design of these systems relies on determining device geometries using analytical electromagnetics, after which various parameters are optimized. In contrast, the flexibility for more complicated optical functionality is currently only possible with “blank-slate” optimization routines. In these algorithms, the device structure is determined by searches through thousands of degrees of freedom, which is computationally prohibitive when targeting arbitrarily complex functionality with larger devices. To this end, this project will develop an artificial intelligence-based, universal photonic neural network architecture and its optimization framework to enable and experimentally demonstrate arbitrary photonic capabilities on-chip. For the first time, this novel approach will allow solutions for designer-specified operations including arbitrary combinations of wavelength and polarization-specific transfer functions. Resulting devices will be fabricated and characterized to demonstrate previously elusive on-chip functionality, and for rapid adoption and widespread use. Customer needs in communications and sensing applications will be specifically targeted through an industrial secondment, and a structured innovation management/commercialization plan. This framework and its industrial use represent a vast leap towards universal integrated photonic design for advancing European capability and economic drivers through innovation in future optical systems. As such, the fellowship will transform my career towards future leadership at the intersection of academic research and industrial innovation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences economics and business business and management innovation management
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34450 Istanbul
Türkiye
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.