Project description
Probing the strong reaction dynamics of photons and electrons on the attosecond scale
The interaction between light and matter encompasses a stunning spectrum of quantum physics phenomena. Funded by the Marie Skłodowska-Curie Actions programme, the SEPhIM project aims to further increase our understanding of how photons interact with electrons by merging expertise in integrated photonics, ultrafast transmission electron microscopy and quantum optics. The use of chip-integrated microresonators with a high-quality factor should enhance the coupling strength between free electrons and cavity photons in an ultrafast transmission electron microscope. Efficient interactions between free electrons and cavities could also enable researchers to synthesise long-lived, strongly correlated quantum states. Ultrafast microscopy should also allow them to visualise soliton waveform dynamics occurring at attosecond speeds.
Objective
The main objective of the SEPhIM research action is the development and exploitation of strong electron-photon interactions with photonic-chip-based high-Q microresonators and photo-induced near-field electron microscopy (PINEM). This will be achieved using the ultra-high quality factor of integrated microresonators to enhance the coupling strength between free electrons and cavity photons in an ultrafast transmission electron microscope (UTEM). This project will bridge and separately advance the fields of integrated photonics, ultrafast electron microscopy, and quantum optics.
By performing UTEM-PINEM, a multidimensional imaging and spectroscopy of the microresonators are available. The enhanced electron-photon interaction, mediated by the high Q-factor of the microresonators, will lead to a strong phase modulation of free electrons, a wide spectral broadening of the electron energy, and the measurement of cavity-photon lifetime.
Moreover, using temporal dissipative solitons formed in the microresonators, time-gated electron-soliton interactions will also be investigated. Due to the strong spatiotemporal confinement of the soliton pulse, the electron-photon coupling will be further enhanced. Attosecond electron pulses in UTEM will enable time-domain electron microscopy of the soliton waveforms, while the concomitant generation of optical frequency combs will provide spectrally-resolved characterization of the electron-soliton interaction.
Furthermore, strong coupling between free electrons and cavity photons will enable quantum state synthesis and entanglement generation. As a proof-of-concept demonstration, we intend to perform all-optical non-demolition detection of free electrons. The electron-photon interaction will be used to herald and register transmitted electrons, thus suppressing shot-noise in the electron beam. This will improve the signal-to-noise ratio and reduce radiation damage in electron imaging and spectroscopy techniques.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy electron microscopy
- natural sciences physical sciences quantum physics quantum optics
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.