Project description
Expanding the applications of chip-scale optical frequency combs
Optical frequency combs (OFCs) are like rulers for light. These specialised lasers generate a spectrum of many discrete and equally spaced frequency lines resembling a fine-toothed comb and enabling the measurement of exact frequencies of light quickly and accurately. The concept shared the 2005 Nobel Prize in physics and, since then, has been used in timekeeping, astronomy and cosmology, precise distance measurement, medical diagnostics and atmospheric science. Soliton microcombs are a disruptive technology that could enable chip-scale OFC sources that can be mass-manufactured, expanding access and application. The EU-funded STAND project is developing the business case for compact soliton microcomb systems and adapting them for industrial testing.
Objective
Soliton microcombs are a disruptive technology enabling chip-scale optical frequency comb (OFC) sources that operate on an entirely different principle than conventional OFCs: parametric nonlinear frequency conversion of a single-frequency laser in a compact optical microresonator. Microcombs provide access to OFCs with large comb line spacing (10 - 1000 GHz), which are able to operate with low power and cover large spectral bandwidth. A strong advantage of the technology is that microcombs can be mass-fabricated using wafer-scale manufacturing, which can make frequency combs truly ubiquitous. Due to their unique potential, the microcombs were intensively investigated over the past years leading to a rapid advancement of the field, which in a few years jumped from the first exploration of microcomb Physics to a real-world applications of soliton microcombs in massively-parallel telecommunications, distance ranging (LiDAR), dual-comb spectroscopy and optical frequency synthesis.
We recently identified a clear interest in compact soliton microcomb systems from industrial and scientific partners. Despite a promising potential of soliton microcombs for applications, the technology however is still hindered in the laboratory: it relies on bulk and expensive laboratory setups and unique expertise of researchers with the technology.
The STAND project will focus on exploring market opportunities, commercial potential, and first industrial testing of standalone soliton microcomb modules. We plan to lay a basis for technology transfer of soliton microcombs, which include the market analysis and development of the business case, customer search and technology dissemination as well as system adaptation for industrial testing.
In the longer term, the STAND results will help to satisfy the demand in compact high-repetition rate OFCs and realize soliton microcombs as a commercial product addressing the needs of broad research and industry communities.
Fields of science
Programme(s)
Funding Scheme
CSA - Coordination and support actionCoordinator
1015 Lausanne
Switzerland