Objective
Optical microscopy, perhaps the most important tool in biomedical investigation and medical diagnosis, provides structural and functional information about biological specimen in a non-invasive and non-ionizing way. However, this technique still faces the challenge of imaging small and weakly scattering objects (e.g.a single cell) embedded inside complex biological tissues causing optical aberrations and scattering. This problem is even more critical in the case of samples that cannot be labelled or do not spontaneously emit light. In SQiMic, I will go one major conceptual step beyond the current paradigm by merging the fields of quantum imaging and light structuring to build a new quantum 'toolbox' for microscopy. My novel approach is based on my pioneering work showing that wavefront shaping techniques, initially developed for laser light manipulation, can also shape higher orders of optical coherence, allowing deterministic tailoring of quantum properties of light such as entanglement. I will use this approach to leverage some genuine quantum imaging concepts such as quantum holography, quantum interferences and quantum illumination, to break the current limits of fluorescent-free classical microscopy and image complex objects with higher resolution, better contrast, reduced aberrations, and less noise. Ultimately, I aim to deliver a quantum-enhanced microscope with unprecedented performances that can be used as a practical tool for biological imaging without labelling the specimens or relying on their possible ability to emit light.
From a methodological standpoint, SQiMic will bridge knowledge from quantum imaging, light structuring, adaptive optics, wavefront shaping, sensors technologies and computational imaging. It will deliver a whole new class of optical imaging methods based on quantum light manipulation and detection. Its long-term core applications are in life-science and biomedical imaging, with potential extension to quantum information science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.