Project description
Multilevel systems unlock new capabilities in quantum computing
Quantum processors have already started outperforming classical machines for certain tasks. However, the underlying quantum information carriers and many targeted problems do not naturally fit into the binary paradigm that underpins today's classical and quantum computers. The EU-funded QUDITS project will leverage qudits that can each encode more than two numbers. Therefore, instead of restricting the rich Hilbert space of trapped ions to only two levels, the proposed research will use multilevel structures, which can prove better at tackling complex problems than qubit systems. Project research could further develop the potential of quantum processors, bringing near-term intermediate-scale quantum devices into a regime beyond classical capabilities.
Objective
Quantum processors have taken the binary paradigm of classical computing to the quantum realm and are starting to outperform the best classical devices. Yet, neither the underlying quantum information carriers, nor many of the targeted problems naturally fit into this two-level paradigm. In this project, I aim to break this paradigm. Instead of restricting the rich Hilbert space of trapped ions to only two levels, the proposed research will make full use of the multi-level (qudit) structure as a resource for quantum information processing. This will unlock unused potential within quantum processors and bring near-term intermediate-scale quantum devices into a regime well beyond classical capabilities. Furthermore, the availability of high-performing qudit quantum hardware will stimulate a rethinking of the way we approach quantum information processing. This ambitious goal will be achieved by designing and implementing a trapped-ion quantum processor, tailored for qudits. Building on the full toolbox of atomic physics, this device will benefit from ongoing developments for binary systems, while featuring significantly extended capabilities, including novel ways of interacting qudits for resource-efficient processing. Using this hardware, we aim to achieve two objectives: First, we will develop tools for and demonstrate native qudit quantum information processing from simulation to computation. Second, we will show that the platform outperforms not only qubit systems but also the best classical devices through the demonstration of a quantum advantage.
I am convinced that this project will stimulate a number of research directions beyond its immediate goals, from application-tailored quantum computing, to advanced quantum communication and quantum metrology. My strong background in several quantum technology platforms, as well as my track record in (multi-level) quantum information processing puts me in a unique position to realize the ambitious goals of this project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics algebra linear algebra
- natural sciences physical sciences atomic physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6020 Innsbruck
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.