Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Computational Hardness Of RepresentAtion Learning

Objective

Rich internal representations of complex data are crucial to the predictive power of neural networks. Unfortunately, current statistical analyses are restricted to over-simplified networks, whose representations (i.e. weight matrices) are either random, and/or project the data in comparatively very large or very low dimensional spaces; in many applications the situation is very different. The modelisation of realistic data is another issue. There is an urgent need to reconcile theory and practice.

Based on a synergy of the mathematical physics of spin glasses, matrix-models from physics, and information and random matrix theory, CHORAL’s statistical framework will delimit computational gaps in the learning, from structured data, of much more realistic models of neural networks. These gaps will quantify the discrepancy between:

(i) the statistical cost of learning good representations, i.e. the minimal amount of training data required to reach a satisfactory predictive performance;
(ii) the cost of efficiency, i.e. the amount of data needed when learning using tractable algorithms, such as approximate message-passing and noisy gradient descents.
Comparing these costs will quantify when learning is computationally hard or not.

To achieve this, CHORAL will first focus on dictionary learning, another essential task of representation learning, and then move on to multi-layer neural networks, which can be thought of as concatenated dictionary learning problems.

CHORAL’s ambitious program, by defining benchmarks for algorithms used in virtually all fields of science and technology will have a direct practical impact. Equally important will be its conceptual impact: the study of information processing systems has become a major source of inspiration for mathematics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

UNITED NATIONS EDUCATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 280 750,00
Address
PLACE DE FONTENOY 7
75007 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 280 750,00

Beneficiaries (1)

My booklet 0 0