Project description
The first smart-dust battery embedded with a low-power monitor
Smart dust, a network of tiny devices fitted with wireless micro-electromechanical sensors, is set to revolutionise the world. It is expected that it will be able to take on previously unachievable tasks. However, lack of an on-chip power source that provides uninterrupted energy prevents smart dust from being utilised in everyday applications. Batteries with adequate energy in an area of less than 1 mm2 are not available. The EU-funded SMADBINS project aims to address this by developing the first tiny battery for smart-dust applications, which will provide the energy for intelligent microsystems and microrobots.
Objective
The lack of an on-chip power source providing uninterrupted energy impedes the progress of smart dust in moving from lab-level demonstrations to everyday applications. Tiny generators relying on external energy sources face spatial and temporal limitations. Batteries with adequate energy are not available in an area of less than 1 mm2, and the reasons for their absence are manifold. Mainstream battery architectures require either thick or tall electrodes created by etching into the wafer, but it is very fiddly to deposit materials onto these electrodes without defects. High-capacity materials such as lithium cobalt oxide, sulfur and lithium metal are often excluded because on-chip techniques to synthesize or stabilize such materials are missing. Moreover, a low-power monitor to provide precise information about the energy storage state and battery health is essential for real applications but unexplored so far. These difficulties demand a paradigm shift in microbattery development to pursue novel approaches that offer energy-dense microbatteries integrable into microsystems. Therefore, we propose a micro-origami technology for on-chip microbatteries using aqueous zinc battery chemistry, together with embedded surveillance based on a non-volatile redox transistor with near-zero power consumption. SMADBINS is expected to bring advances in battery chemistry and materials and on-chip energy production and management, boosting research for microbattery and smart dust applications, as was recently highlighted by the PI [Nature, 2021, 589, 195]. The PI has decisively contributed to the field of aqueous microbatteries and developed the smart dust battery concept together with his team in several publications. However, a smart dust battery has not been achieved yet. Therefore, the main objective of this project is to develop the first smart dust battery embedded with a low-power monitor, which attains a footprint capacity of more than 10 mAh/cm2 within 1 mm2.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences chemical sciences inorganic chemistry transition metals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
09111 Chemnitz
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.