Objective
The pressing need for beyond-von-Neumann computing paradigms has triggered intensive efforts into understanding and controlling various resistive switching (RS) mechanisms. This switching, in which the two terminal resistance of a device is controlled by current is at the heart of emerging technologies such as resistive random access memory and neuromorphic computation. These technologies promise to revolutionize artificial neural networks and mimic the behavior of biological brains, triggering a race the for optimal RS materials.
In Mott insulators electrical currents can change resistance by orders-of-magnitude due to an insulator-metal phase transition. The volatility of switching in Mott insulators can be adjusted by several tuning parameters, enabling both memory devices and neuron-like functionalities. Moreover, in terms of fundamental switching timescales and energy efficiency, Mott insulators may have very significant advantages over other RS mechanisms. These unique properties have made Mott insulators prominent candidate materials for RS. However, the physical mechanisms behind RS in these materials are not well understood and often uncontrollable, hampering realization of their full potential.
We suggest two main routes towards Mott-insulator-based RS with ultrahigh energy efficiency. The first is by switching purely in the electronic sector while minimizing structural distortions. Thus, the low heat capacity of electrons may enable switching with a fraction of the energy required in an insulator-metal transition coupled to a structural transition. The second is absorption of latent heat and/or elastic energy from the surroundings of the switching volume, thus reducing the externally supplied power consumption. Our aim is to use defects, doping and strain engineering to understand and tune RS mechanisms, and develop novel functionalities with ultra-low energy consumption.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.